
1

CANbus - hardware description

B.Hallgren - CERN ATLAS DCS

CAN is one of the CERN recommended fieldbuses. It allows implementation of a distributed
detector sensor and control system for the LHC experiments. A LHC experiment has for
each sub detector has independent control system. The different sensors and control
functions are grouped into nodes for each sub-detector. The nodes are connected with each
other and with the local control station in a CAN network. The basic principles of CAN
network communication are explained with examples in the following sections.

CONTENTS

1. Communication modes
2. Message format
3. Arbitration and collision detection
4. Message acknowledgements and error detection
5. CAN bus speed and cable lengths
6. CAN bus connector and pinout

1. Communication Modes and Data Exchange

When data are transmitted over a CAN network no individual nodes are addressed. Instead
the message is assigned an identifier which uniquely identifies its data content. The identifier
not only defines the message contents but also the message priority. If a node wishes to
transmit information it simply passes the data and the identifier to the CAN controller and set
the relevant transmit request. It is then up to the CAN controller to format the message
contents and transmit the data in the form of a CAN frame. Once the node has gained access
to the bus and is transmitting its message all other nodes become receivers. Having received
the message correctly, these nodes then perform an acceptance test to determine if the data is
relevant to that particular node.

Therefore, it is not only possible to perform communication on a peer to peer basis where a
single node accepts the message but also to perform broadcast and synchronized
communication whereby multiple nodes can accept the same message using only a single
transmission. The ability to send data on an event basis means that bus load utilization can be
kept to a minimal amount.

This concept has become known in the networking world as the producer/consumer
mechanism whereby one node produces data on the bus for other nodes to consume. The
difference with CAN over other fieldbus solutions is that this mechanism requires no
interaction from a bus master or arbiter.

2. Message Format

A CAN message mainly consists of an identifier field and the data field (plus error,
acknowledgement and CRC fields). The identifier field consists of 11 or 29 bits (CAN 2.0A
and 2.0B respectively) and the data field consists of a maximum of 8 bytes. When a device
transmits a CAN message it first transmits the identifier field followed by the data field. The
identifier field determines which node gains access to the bus (arbitration) and which nodes
receive the data. Individual nodes can be programmed to accept messages with specific

2

identifiers. A data transfer will occur if the identifier of the transmitted message matches the
identifier of message which the node is configured to receive. Nodes that are not programmed
with the same identifier as the transmitted CAN message will not receive the data. This is
known as acceptance mask filtering and is normally performed by the CAN hardware. The
RTR bit is used for a remote transmit request. With this bit set the CAN frame has an
identifier with a data field with no data bytes. A node which contains the corresponding
identifier will send a message with data bytes as in reply to this request.

Figure 1 - CAN frame format (Standard frame CAN Spec 2.0A)

3.Arbitration

CAN employs the Carrier Sense Multiple Access with Collision Detection (CSMA/CD)
mechanism in order to arbitrate access to the bus. It uses a priority scheme using numerical
identifiers in order to resolve collisions between two nodes wishing to transmit at the same
time.

On the CAN bus a ‘zero’ (a dominant bit) on the bus is dominant and overwrites a ‘one’ (a
recessive bit). Therefore, if a node is transmitting a ‘one’ whilst another transmits a zero will
result in a ‘zero’ level on the bus (the one is overwritten). This process is shown in Figure 2.

When two or more nodes wish to transmit they sense the bus and if there is no bus activity
they begin to transmit their message identifier most significant bit first. At the same time that
they transmit their identifiers they also monitor the bus levels. If one node transmits a
recessive bit on the bus and the other transmits a dominant bit the resulting bus level is a
dominant bit. Therefore, the node transmitting a recessive bit will see a dominant bit on the
bus (situation where B loose in Figure 2) and stop transmitting any further information. This
allows the node with the lowest number in its identifier field to gain access to the bus and
transmit its message. Any node that has lost during the arbitration process then waits until the
bus becomes free before trying to re-transmit its message.

Note that this scheme means that no bandwidth is wasted during the arbitration process.
Ethernet (for example) also uses CSMA/CD but if there is a collision between two nodes, one
node will transmit a jamming signal causing both nodes to back off the bus. Both nodes will
then wait a random period of time before trying to re-transmit. The bus arbitration process
used by CAN means that the node with the highest priority (lowest value in the identifier
field) will continue to transmit without having to back off the bus. This gives CAN very
predictable behaviour (no random waiting) and very efficient bandwidth use of the bus. In
fact it is possible to have CAN networks operating at near 100% bus bandwidth.

3

Figure 2 - CAN Bus Arbitration (non-destructive Bitwise Arbitration)

4. Message Acknowledgement and Error Checking/Signaling Mechanisms

Unlike other bus systems CAN does not use acknowledgement messages which waste
bandwidth on the bus. As mentioned in section 2.3, each receiver that receives the message
correctly acknowledges the message by transmitting a dominant bit in the ACK slot thus
notifying the transmitter that the message was received correctly by at least one node. All
nodes check each frame for errors and any node in the system that detects an error actively
signals this to the transmitter. This means that CAN has network wide data security as a
transmitted frame is checked for errors by ALL nodes irregardless of any filtering of the
CAN telegrams.

The error checking mechanisms are:

Bit Errors - When a transmitter transmits a bit on the bus it also monitors the bus to
determine whether the actual bit level on the bus matches the intended one.

Bit Stuffing Errors - Bit stuffing occurs when five bits are transmitted on the bus with the
same polarity a bit of the opposite polarity is inserted into the bit stream. CAN uses bit
stuffing for two purposes. The first is to provide edges to allow receivers to re-synchronise
and adjust internal timing accordingly. The second is as an error checking mechanism
whereby a violation of the bit stuffing rule is deemed an error, for example, six consecutive
recessive bits.

Cyclic Redundancy Check (CRC) - An incoming telegram is checked using a 15-bit CRC
check. A 15-bit CRC check is calculated by both the transmitter and the receiver. The
transmitter transmits its CRC as part of the frame and this is compared with the receivers own
independent CRC calculation. If the two calculations do not agree an error has occurred
during transmission of the frame.

Form Errors - The incoming CAN frame is checked by the receiver to make sure that the
size in bits of individual parts of the frame are as expected i.e. there are no extra illegal bits in
a field of the frame.

Acknowledgement Errors - As mentioned earlier frames are acknowledged by inserting an
ACK bit into the ACK slot of the frame. If no acknowledgement is received by the
transmitter of the message this may mean that there is a transmission error which has been
detected by the recipients, the ACK slot has been corrupted or that there are no receivers.

If an error is detected by ANY of the other nodes (irregardless of whether the message was

4

meant for it or not) the current transmission is aborted by transmission of an active error
frame from at least one node. An active error frame consists of six consecutive dominant bits
and prevents other nodes from accepting the erroneous message. The active error frame
violates bit stuffing and may also corrupt the fixed form of the frame causing other nodes to
transmit their
own active error frames. After an active error frame, the transmitting node begins re-
ransmission of the frame automatically within 23 bit periods or in some cases 31 bit periods.

CAN controllers have their own transmit and receive error counters which register errors
during transmission and reception respectively. These counters are implemented in hardware
and incremented by eight every time a frame is found to be erroneous and decremented by
one every time a message is transmitted or received correctly. Over a period of time the error
count may increase even if there are fewer corrupted frames than uncorrupted ones.

During normal operation the CAN controller is in its error-active state. In this state, the node
is able to transmit an active error frame every time a CAN frame found to be corrupt. If one
of the error counters reaches a warning limit of 96 error counts (indicating significant
accumulation of errors) this is signalled by the controller usually using an interrupt. The
controller operates in its error active mode until a limit of 127 error counts has been
exceeded.

Once 128 error counts has been reached, the CAN controller enters an error-passive state. In
this state, an error-passive controller is still able to transmit and receive messages but signals
errors by transmitting a passive error frame. A passive error frame consists of six recessive
bits and this frame may be ignored or overwritten by other CAN controllers. If the error count
drops below 128 again the controller then becomes error-active again transmitting active
error frames as required.

If the error count reaches or exceeds a limit of 256, the controller enters its Bus-OFF state. In
this state the controller can no longer transmit or receive messages until it has been reset by
the host processor resetting its hardware counters back to zero.

5. CANbus speed and lengths

A CAN node is capable of transmitting at a maximum speed of 1 Mbits/s. This speed is given
by the method of processing of the bit pattern by the CAN controller. All the nodes on the
CAN bus must have sufficient time to sample and decode the bus signal at the same bit time.
Therefor allowance has to be given for the propagation delays of the cable and transmitter.
The Table 1 below shows the relation between the bitrate and the cable length. The number
of nodes per cable is limited by the transceiver hardware to 110.

5

Bitrate Cable length

10 kbits/s 6.7 km

20 kbits/s 3.3 km

50 kbits/s 1.3 km

125 kbits/s 530 m

250 kbits/s 270 m

500 kbits/s 130 m

1 Mbits/s 40 m

Table 1 Recommended bitrates and cable lengths

The length of a CAN message varies depending on the number of data bytes transmitted but
also on the contents of the message. This is due to the bit stuffing method described above.
Table 2 shows the effective length of CAN message as a function of the data field length.

Number of data bytes 0 1 2 3 4 5 6 7 8

Minimum message length 44 52 60 68 76 84 92 100 108

Maximum message length 51 60 70 80 89 99 108 118 128

Table 2 Effective message lengths (in bits)

5.1 Example of CAN message transfer times

The effective speed of a data transfer of the CAN bus can be illustrated by the following
example: 64 kbytes of a flash memory of a microcontroller is to be down loaded in remote
CAN node. The distance from the control room to the microcontroller is estimated to 150 m.
From Table 1 is obtained the recommended CAN bus bitrate of 250 kbits/s. A simple CAN
message format is used with the data field divided into 2 bytes for the address of the flash
memory and 1 byte for the data. This gives in total 3 bytes per message. The worst case
message time is therefore 80 time 4 usec or 320 usec. The total transfer time is 21 seconds
assuming neglible other data traffic. If a more compact data field format is used, with 2 data
bytes as address and 6 bytes for data, the Table 2 gives 128 times 4 usec or 512 usec time per
6 flash memory bytes. In total the transfer time is then 5.6 seconds. It should be mentioned
that the above example is not the typical use for the CAN bus. It is more suitable to send data
on an event basis eg. on error conditions.

6

6 Can bus connector

The recommended CAN bus connector is shown in Figure 3. The CERN ATLAS DCS Local
Monitor Box can be powered via the CAN bus connector. It needs two power supplies one
analogue and and digital as shown in Figure 3.

pin CiA ATD-DCS

1 reserved RESET

2 CAN_L CAN_L

3 CAN_GND CAN_GND

4 reserved AGND

5 CAN_SHLD CAN_SHLD

6 GND DGND

7 CAN_H CAN_H

8 reserved +VA

9 CAN_V+ +VD

Figure 3 The CAN bus connector

7 CERN Can bus implementation

Operation in the radiation environment at the LHC detector cavern requires radiation tolerant
CAN controller. The magnetic field requires special considerations and low power and cost
are very demanding specifications which have been considered in the ATLAS DCS Local
Monitoring Box.

