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Abstract 
 
This paper gives an overview of Surrey Satellite Technology Ltd. (SSTL) use of CAN bus 
on its recent missions. It gives a description of the SSTL CAN topology and goes into 
depth concerning software protocols. The paper also covers chipsets (including COTS) 
used in order to implement CAN in space. 
 
 
1. Introduction  
 
The Controller Area Network (CAN) is a bus system used for the communication of 
discrete packets of information across a distributed electronic system. It is ideally suited for 
real time commanding. 
 
CAN was adopted by the automotive industry in the late 80’s to handle the increasing 
connectivity requirements of in-car electronic systems.  CAN was originally developed by 
Bosch and is now formalised in ISO-11898 Parts 1 and 2. 
CAN features include prioritization of messages, configuration flexibility, multicast 
reception with time synchronization, system wide data consistency, multi-master and 
automatic retransmission of corrupted messages. 
 
 
2. SSTL CAN Implementation 
 
SSTL has been using CAN as an on-board telemetry/telecommand bus since 1995. 
Initially CAN was used with a centralised TTC system on FASAT-Alpha/Bravo.  SSTL then 
migrated to a distributed CAN solution, as commonly used in the automotive industry. All 
TTC functions have been exclusively implemented using the distributed CAN bus on 6 
LEO missions (UoSAT-12, SNAP-1, AlSAT-1, UKDMC, NigeriaSAT-1 & BilSAT-1). The  
CAN topology featured in figure 1 has been tried and tested: 
 
Nodes within the spacecraft connect to both primary and redundant buses via a latching 
relay. On power up, the relay of a node switches to communicate on the primary bus. If a 
node does not receive a CAN message for 5 minutes, it assumes bus failure and switches 
to the redundant bus. Modules connected to the bus fall into 2 categories: 
 

• A data processing module such as an On Board Computer (OBC) has 2 
connections to the bus. One is through an 8-bit CAN microcontroller which provides 
telemetry when the main processor is off. The other is via a CAN peripheral 
connected to the main processor. 



• Less intelligent modules are connected to the bus via the 8-bit microcontroller which 
performs all the control/telemetry gathering needed. 

 

 
Figure 1 – CAN Bus Architecture 
 
 
This architecture ensures the survival of the mission upon a single hardware failure 
anywhere in the system. Failures of the transceivers and other CAN interface hardware 
are accounted for by incorporating complete hardware redundancy. 
 
 
2.1 CAN SU Protocol 
 
SSTL has developed its own relatively simple higher layer protocol on top of CAN. CAN for 
spacecraft usage (CAN-SU) forces peer to peer addressing and is optimised for telemetry, 
telecommand and buffer transfer. The development of CAN-SU was driven by SSTL 
practices and had the following requirements: 
 

• Repeat build of spacecraft sub-systems for different missions 
• Large volume of telemetry available 
• Scalable platforms 

 
At the time of CAN-SU’s creation, 29 bit CAN identifiers were being introduced and 
therefore it is limited to an 11 bit identifier. This has proven to be a limiting factor to the 
way the CAN is used on SSTL spacecraft. 
 
The CAN-SU protocol splits a CAN frame up in the following way (with the exception of the 
buffer transfer) as shown in Figure 2 below. 
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Figure 2 – CAN-SU protocol in a CAN frame 
 
The 11 bit CAN identifier field is split into 2 parts. The first part is the ID of a task running 
on a processor (eg AOCS task), the other being a sequence number that is used in the 
buffer transfers. Since the CAN-SU identifier field is only 8 bits long, the maximum number 
of addressable processes in the system is 256. Not wanting to limit the amount of 
telemetry channels on the spacecraft to 256 the decision was made to use the CAN data 
field to hold an address field. This specifies a telemetry/telecommand channel giving a 
total of 256*210 possible telemetry channels across the spacecraft and 210 channels per 
task. Since the addressing of telemetry and telecommands across the CAN uses not only 
the CAN ID field but also part of the CAN Data field, the use of remote frames2 is not 
possible. CAN-SU therefore only makes use of CAN Data frames2. 
 
The protocol forces peer to peer addressing by featuring the “From ID” in the CAN data 
field, this allows the receiving node to know where to acknowledge the request. 
 
The “C” field specifies the CAN-SU message type (eg. telemetry request, telemetry 
response etc). It is excluded in some packets of a buffer transfer in order to maximise data 
throughput. The packet type is then determined by the sequence number within the CAN 
ID field.  The protocol features several message types some of which are detailed in the 
following sections. 
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2.1.1 Telecommand Exchange 
 

 
Figure 3 – Example of CAN-SU Telecommand Exchange 
 
The telecommand exchange (Figure 3) is a simple request/acknowledge transfer using the 
CAN Data frame2 message format. Since the address of the telecommand is comprised of 
both the ID field and the address in the data field and that a processor task typically uses 1 
ID, overruns of the receiving hardware buffer can occur, therefore an acknowledgement 
message is necessary. The data field of the telecommand request comprises of an 
address and the data or argument related to that telecommand address. The telecommand 
acknowledgement includes a response field featuring any necessary data response. 
 
 
2.1.2 Telemetry Exchange 
 
The exchange of telemetry is illustrated as shown in the following diagram: 
 

 
 
Figure 4 – Example of CAN-SU Telemetry Exchange 
 
Telemetry is retrieved using a simple request/response method (Figure 4).  Once again 
using CAN Data frames2, the request packet features a 10 bit address and the response 
features up to 32 bits of data.  
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2.1.3 Buffer transfer 
 
CAN has a small data payload per packet (8 bytes max) which minimises bus latency. 
Therefore, it is not well suited to large data exchanges between nodes. Therefore, CAN-
SU incorporates a buffer transfer scheme that speeds up large data transfers. This is 
illustrated below: 
 

 
 
Figure 5 – Example of CAN-SU Buffer Transfer 
 
The transfer is initiated by either a put or a get request to/from the data source. This is 
acknowledged by the corresponding sink/source. The get request features a 24 bit buffer 
identifier and a 24 bit length. Next in the transfer is the burst request. This features the 
window size (number of packets in a burst). This packet also features the 1 bit “Br” burst 
number used to keep sync of the bursts (in the “X” byte). The burst features a start burst 
and up to 6 burst packets. A burst packet features 7 bytes of data and the from identifier. 
After as many bursts are transferred as are necessary for the transfer, the session is 
terminated by a Done and Done OK handshake.   
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2.2 CAN Hardware 
 
2.2.1 COTS CAN Solution 
 
SSTL specialise in providing low cost, predominantly LEO missions to a variety of civil and 
military markets.  It has been the ongoing philosophy to fly exclusively commercial off the 
shelf technology (COTS) while mitigating the risk of radiation effects by module level 
redundancy and passive fail-safe system design.  This is possible as the LEO orbits used 
range between 600Km and 1000Km where the radiation effects are relatively benign.  
 
The total ionising radiation dose is in the region of 1Krad per year (at the component level 
with 5mm of aluminium shielding), SEUs occur at a rate of approximately 1 SEU per Mbyte 
of SRAM per day (from empirical observations) and observed SEL events are very rare, 
with only 3 or 4 suspected cases in SSTL’s history.  
 
It has been found that almost all CMOS COTS electronics will survive 10Krads with no 
significant degradation in performance.  SELs are mitigated by over current trips on the 
power system and cold redundant modules.  And SEUs are mitigated by EDAC where 
possible.  Further SEU protection provided by the design of the satellite system to be safe 
should the on-board computer crash.  For example, the thermal control is passive and will 
work with the satellite in any attitude. 
  
The use of COTS components allows SSTL to rapidly utilise new technology as it enters to 
commercial market.  SSTL first flew CAN bus technology in 1996 and now uses CAN as 
the telemetry and tele-command bus for all missions.  See table 1 for components flown: 
 
 

Components flown  Number of 
Missions Flown 

Philips CAN Transceiver: Physical CAN driver, current production 4 

Phillips PCA82C250: Physical CAN driver, going obsolete 10 

Philips P87C592: CAN microcontroller, obsolete 10 

Philips CAN 8-bit peripheral, current production 4 

Philips PCA82C200: CAN 8-bit peripheral, obsolete 6 

Infineon: 8-bit CAN microcontroller (A/D, PWM etc. 8051), current 
production  6 

Microchip CAN SPI peripheral 4 

 
Table 1 – COTS CAN components used on recent missions 
 
Total numbers of a COTS component flown can be substantial.  For example, the 8-bit 
microcontroller is used on all 30 to 40 modules in a spacecraft, so over the five year 
lifetime of a typical SSTL satellite, several hundred orbit-years of use is collected.  This 
rapid accumulation of failure-free orbit years suggests that COTS is a viable approach to 
benign LEO missions. 
 



2.2.2 Radiation Tolerant CAN Solution (RadCAN) 
 
Recently SSTL has started moving out of the benign environment LEO missions.  As part 
of the British National Space Centre funding, a small GEO platform program is being 
developed under the project GEMINI.  In order to meet the tougher radiation environment 
and higher reliability (as GEMINI has deployable panels and therefore no passive fail-safe 
attitude) A COTS approach is no longer applicable and a more traditional space industry 
solution was required.   
 
As SSTL has a lot of experience with the CAN bus, it was decide to develop a Radiation 
tolerant CAN node – RadCAN.  This was to allow quicker migration of current designs 
between the various environments as required.   
 
Therefore, the single chip CAN microcontroller functionality had to be re-created with a 
discrete 8051 microcontroller, memory, EPROM, ADC and FPGA, as shown in figure 5.1 
below.   
 

 
Figure 6 – Discrete elements of the RadCAN solution 
 
 
Using traditional space approved components a Latch-up immune, highly SEU tolerant, 
100Krad solution was produced.  However, there is a significant increase in design 
complexity and size. The physical impact of migrating from COTS to radiation tolerant is 
shown in Table 2. 
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 COTS microcontroller RadCAN 

Size 1”sq >6”sq 

Mass <5g >50g 

Power <0.75W (max), 0.20W (nominal) Estimate 1W 

Total Dose <10Krad 100Krads 

SEE Protection None Highly SEU tolerant, latch-up 
immune 

Component Cost <$10 >$15000 

Export Issues None Full ITAR 

 
Table 2 – Comparison of a Radiation Tolerant to COTS CAN solution 
 
 



3 Future Work 
 
3.1 Protocols 
 
CAN-SU has been tried and tested over a large number of missions and has been proved 
robust. It does not however make the most of CAN. The use of 29 bit identifiers could 
increase the amount of data available per telemetry request and also make use of the RTR 
bit and other features unavailable through CAN-SU. Future work on CAN protocols at 
SSTL could also concentrate on CANOpen. 
 
 
3.2 Hardware 
 
SSTL is currently looking at the latest generation of 8-bit microcontrollers to replace the 
current infineon device.  Initials tests of a Microchip PIC device have looked promising with 
the 3.3V core providing a significant power saving.  The processor can also be clocked up 
to 40MHz providing up to 3.5MIPS if required (compared to the infineons 1MIPS). 
 
As SSTL moves out of purely LEO missions, the need for more robust, radiation tolerant 
systems increases.  The next generation of RadCAN is being developed as a System on a 
chip solution (SoC), integrating VHDL IP cores for a micro-controller, CAN core, memory 
and EDAC in a single FPGA as shown in figure 7.  The current FPGA baseline is the 
million gate radiation tolerant version of the Actel AX.  
 

 
Figure 7 – IP cores to replace RadCAN 
 
 
For applications not requiring microcontroller functionality, RadCAN Lite is being 
developed as just the CAN core with a simple state-machine for telemetry and 
telecommand services.  This design would be targeted at the smaller and cheaper Actel 
RTSXA range of FPGAs. 
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4 Conclusion 
 
With 10’s of orbit years of use on SSTL satellites, COTS CAN has been proven to be a 
suitable architecture for the radiation benign LEO missions.  The combination of module 
redundancy and fault tolerant system design has resulted in no observed failures of the 
CAN bus or it’s constituent components. 
 
With the developments outlined above, the CAN bus will be an attractive alternative to 
more traditional space bus architecture for all missions. 
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