
Application and experience of CAN as a low cost OBDH bus system
MAPLD 2004, Washington D.C. USA, 8th – 10th September, 2004

A. M. Woodroffe and P. Madle

Surrey Satellite Technology Ltd, University of Surrey, Guildford, GU2 7XH, UK.

Email: a.woodroffe@sstl.co.uk p.madle@sstl.co.uk
Phone: +44 1483 689278

Fax: +44 1483 689503

Abstract

This paper gives an overview of Surrey Satellite Technology Ltd. (SSTL) use of CAN bus
on its recent missions. It gives a description of the SSTL CAN topology and goes into
depth concerning software protocols. The paper also covers chipsets (including COTS)
used in order to implement CAN in space.

1. Introduction

The Controller Area Network (CAN) is a bus system used for the communication of
discrete packets of information across a distributed electronic system. It is ideally suited for
real time commanding.

CAN was adopted by the automotive industry in the late 80’s to handle the increasing
connectivity requirements of in-car electronic systems. CAN was originally developed by
Bosch and is now formalised in ISO-11898 Parts 1 and 2.
CAN features include prioritization of messages, configuration flexibility, multicast
reception with time synchronization, system wide data consistency, multi-master and
automatic retransmission of corrupted messages.

2. SSTL CAN Implementation

SSTL has been using CAN as an on-board telemetry/telecommand bus since 1995.
Initially CAN was used with a centralised TTC system on FASAT-Alpha/Bravo. SSTL then
migrated to a distributed CAN solution, as commonly used in the automotive industry. All
TTC functions have been exclusively implemented using the distributed CAN bus on 6
LEO missions (UoSAT-12, SNAP-1, AlSAT-1, UKDMC, NigeriaSAT-1 & BilSAT-1). The
CAN topology featured in figure 1 has been tried and tested:

Nodes within the spacecraft connect to both primary and redundant buses via a latching
relay. On power up, the relay of a node switches to communicate on the primary bus. If a
node does not receive a CAN message for 5 minutes, it assumes bus failure and switches
to the redundant bus. Modules connected to the bus fall into 2 categories:

• A data processing module such as an On Board Computer (OBC) has 2
connections to the bus. One is through an 8-bit CAN microcontroller which provides
telemetry when the main processor is off. The other is via a CAN peripheral
connected to the main processor.

• Less intelligent modules are connected to the bus via the 8-bit microcontroller which
performs all the control/telemetry gathering needed.

Figure 1 – CAN Bus Architecture

This architecture ensures the survival of the mission upon a single hardware failure
anywhere in the system. Failures of the transceivers and other CAN interface hardware
are accounted for by incorporating complete hardware redundancy.

2.1 CAN SU Protocol

SSTL has developed its own relatively simple higher layer protocol on top of CAN. CAN for
spacecraft usage (CAN-SU) forces peer to peer addressing and is optimised for telemetry,
telecommand and buffer transfer. The development of CAN-SU was driven by SSTL
practices and had the following requirements:

• Repeat build of spacecraft sub-systems for different missions
• Large volume of telemetry available
• Scalable platforms

At the time of CAN-SU’s creation, 29 bit CAN identifiers were being introduced and
therefore it is limited to an 11 bit identifier. This has proven to be a limiting factor to the
way the CAN is used on SSTL spacecraft.

The CAN-SU protocol splits a CAN frame up in the following way (with the exception of the
buffer transfer) as shown in Figure 2 below.

DRIVER

CAN uC

TC TLM

TEMP

TYPICAL MODULE

DRIVER

CAN uC

TC TLM

TEMP

TYPICAL MODULE

DRIVER

CAN uC

TC TLM

TEMP

TYPICAL DATA
PROCESSING MODULE

DRIVER

CAN
Periph

uP

DRIVER

CAN uC

TC TLM

TEMP

TYPICAL DATA
PROCESSING MODULE

DRIVER

CAN
Periph

uP

PRIMARY CAN BUS

SECONDARY CAN BUS

Figure 2 – CAN-SU protocol in a CAN frame

The 11 bit CAN identifier field is split into 2 parts. The first part is the ID of a task running
on a processor (eg AOCS task), the other being a sequence number that is used in the
buffer transfers. Since the CAN-SU identifier field is only 8 bits long, the maximum number
of addressable processes in the system is 256. Not wanting to limit the amount of
telemetry channels on the spacecraft to 256 the decision was made to use the CAN data
field to hold an address field. This specifies a telemetry/telecommand channel giving a
total of 256*210 possible telemetry channels across the spacecraft and 210 channels per
task. Since the addressing of telemetry and telecommands across the CAN uses not only
the CAN ID field but also part of the CAN Data field, the use of remote frames2 is not
possible. CAN-SU therefore only makes use of CAN Data frames2.

The protocol forces peer to peer addressing by featuring the “From ID” in the CAN data
field, this allows the receiving node to know where to acknowledge the request.

The “C” field specifies the CAN-SU message type (eg. telemetry request, telemetry
response etc). It is excluded in some packets of a buffer transfer in order to maximise data
throughput. The packet type is then determined by the sequence number within the CAN
ID field. The protocol features several message types some of which are detailed in the
following sections.

ID (8 bits) Seq = 0
Len
= 7

Address (10bits)From
(8 bits)

Unused
5 bits

Response
32 bitsID (8 bits) Seq (3

bits
Len Address (10bits)From ID

(8 bits)
Unused
5 bits Data

11 bit CAN Identifier

CAN Length

CAN Data

Where:

2.1.1 Telecommand Exchange

Figure 3 – Example of CAN-SU Telecommand Exchange

The telecommand exchange (Figure 3) is a simple request/acknowledge transfer using the
CAN Data frame2 message format. Since the address of the telecommand is comprised of
both the ID field and the address in the data field and that a processor task typically uses 1
ID, overruns of the receiving hardware buffer can occur, therefore an acknowledgement
message is necessary. The data field of the telecommand request comprises of an
address and the data or argument related to that telecommand address. The telecommand
acknowledgement includes a response field featuring any necessary data response.

2.1.2 Telemetry Exchange

The exchange of telemetry is illustrated as shown in the following diagram:

Figure 4 – Example of CAN-SU Telemetry Exchange

Telemetry is retrieved using a simple request/response method (Figure 4). Once again
using CAN Data frames2, the request packet features a 10 bit address and the response
features up to 32 bits of data.

Telemetry request

Telemetry response

Data Sink Data Source

ID (8 bits) Seq = 0 Len
= 3

Address (10bits)From
(8 bits)

Unused
5 bits

Tlm Seq
1 bit

ID (8 bits) Seq = 0 Len
= 3

Address (10bits)From
(8 bits)

Unused
5 bits

Tlm Seq
1 bit

Telemetry request

ID (8 bits) Seq = 0 Len
= 7 Address (10bits)From

(8 bits)
Unused
4 bits

Tlm Fmt
1 bit

Tlm Seq
1 bit

Data
32 bitsID (8 bits) Seq = 0 Len

= 7 Address (10bits)From
(8 bits)

Unused
4 bits

Tlm Fmt
1 bit

Tlm Seq
1 bit

Data
32 bits

Telemetry response

Telecommand request

Telecommand ack

Request Source Request Sink

ID (8 bits) Seq = 0 Len
= 7

Address (10bits)From
(8 bits)

Unused
6 bits

Data
32 bits

ID (8 bits) Seq = 0 Len
= 7

Address (10bits)From
(8 bits)

Unused
6 bits

Data
32 bits

Telecommand request

ID (8 bits) Seq = 0
Len
= 7 Address (10bits)

From
(8 bits)

Unused
5 bits

Response
32 bits

V
1 bitID (8 bits) Seq = 0

Len
= 7 Address (10bits)

From
(8 bits)

Unused
5 bits

Response
32 bits

V
1 bit

Telecommand ack

2.1.3 Buffer transfer

CAN has a small data payload per packet (8 bytes max) which minimises bus latency.
Therefore, it is not well suited to large data exchanges between nodes. Therefore, CAN-
SU incorporates a buffer transfer scheme that speeds up large data transfers. This is
illustrated below:

Figure 5 – Example of CAN-SU Buffer Transfer

The transfer is initiated by either a put or a get request to/from the data source. This is
acknowledged by the corresponding sink/source. The get request features a 24 bit buffer
identifier and a 24 bit length. Next in the transfer is the burst request. This features the
window size (number of packets in a burst). This packet also features the 1 bit “Br” burst
number used to keep sync of the bursts (in the “X” byte). The burst features a start burst
and up to 6 burst packets. A burst packet features 7 bytes of data and the from identifier.
After as many bursts are transferred as are necessary for the transfer, the session is
terminated by a Done and Done OK handshake.

Get

Get OK

Burst Request

Start Burst

Burst

Burst

Burst

Burst Request

Start Burst

Burst

Burst

Burst

Done

Done OK

ID (8 bits) Seq = 0
Len
= 7

From
(8 bits)

Unused
ID (8 bits) Seq = 0

Len
= 8

From
(8 bits) 24 bits

ID (8 bits) Seq = 0 Len
= 7

From
(8 bits)

ID (8 bits) Seq = 0 Len
= 3

From
(8 bits)

ID (8 bits) Seq = 0
Len
= 7

From
(8 bits)ID (8 bits) Seq = 1

Len
= 8 X (1 byte)

From
(8 bits)

ID (8 bits) Seq = 0 Len
= 7

Address (10bits)From
(8 bits)

ID (8 bits) Seq = 0 Len
= 2

C = 6From
(8 bits)

ID (8 bits) Seq = 0
Len
= 7 Address (10bits)

From
(8 bits)ID (8 bits) Seq = 0

Len
= 2 C = 7

From
(8 bits)

C = 0 24 bits
I L

ID (8 bits) Seq = 0
Len
= 7

From
(8 bits)

Unused
ID (8 bits) Seq = 0

Len
= 8

From
(8 bits) 24 bitsC = 2 24 bits

I L

Window
size (3 bits)

Br
=0C = 5 4 bits

Reserved

Data (6 bytes)

ID (8 bits) Seq = 0 Len
= 7

From
(8 bits)

ID (8 bits) Seq =
2 to 7

Len
= 8

From
(8 bits)

Data (7 bytes)

Get message

Get OK
message

Burst Request
message

Start Burst
message

Burst message

Done message

Done OK
message

2.2 CAN Hardware

2.2.1 COTS CAN Solution

SSTL specialise in providing low cost, predominantly LEO missions to a variety of civil and
military markets. It has been the ongoing philosophy to fly exclusively commercial off the
shelf technology (COTS) while mitigating the risk of radiation effects by module level
redundancy and passive fail-safe system design. This is possible as the LEO orbits used
range between 600Km and 1000Km where the radiation effects are relatively benign.

The total ionising radiation dose is in the region of 1Krad per year (at the component level
with 5mm of aluminium shielding), SEUs occur at a rate of approximately 1 SEU per Mbyte
of SRAM per day (from empirical observations) and observed SEL events are very rare,
with only 3 or 4 suspected cases in SSTL’s history.

It has been found that almost all CMOS COTS electronics will survive 10Krads with no
significant degradation in performance. SELs are mitigated by over current trips on the
power system and cold redundant modules. And SEUs are mitigated by EDAC where
possible. Further SEU protection provided by the design of the satellite system to be safe
should the on-board computer crash. For example, the thermal control is passive and will
work with the satellite in any attitude.

The use of COTS components allows SSTL to rapidly utilise new technology as it enters to
commercial market. SSTL first flew CAN bus technology in 1996 and now uses CAN as
the telemetry and tele-command bus for all missions. See table 1 for components flown:

Components flown Number of
Missions Flown

Philips CAN Transceiver: Physical CAN driver, current production 4

Phillips PCA82C250: Physical CAN driver, going obsolete 10

Philips P87C592: CAN microcontroller, obsolete 10

Philips CAN 8-bit peripheral, current production 4

Philips PCA82C200: CAN 8-bit peripheral, obsolete 6

Infineon: 8-bit CAN microcontroller (A/D, PWM etc. 8051), current
production 6

Microchip CAN SPI peripheral 4

Table 1 – COTS CAN components used on recent missions

Total numbers of a COTS component flown can be substantial. For example, the 8-bit
microcontroller is used on all 30 to 40 modules in a spacecraft, so over the five year
lifetime of a typical SSTL satellite, several hundred orbit-years of use is collected. This
rapid accumulation of failure-free orbit years suggests that COTS is a viable approach to
benign LEO missions.

2.2.2 Radiation Tolerant CAN Solution (RadCAN)

Recently SSTL has started moving out of the benign environment LEO missions. As part
of the British National Space Centre funding, a small GEO platform program is being
developed under the project GEMINI. In order to meet the tougher radiation environment
and higher reliability (as GEMINI has deployable panels and therefore no passive fail-safe
attitude) A COTS approach is no longer applicable and a more traditional space industry
solution was required.

As SSTL has a lot of experience with the CAN bus, it was decide to develop a Radiation
tolerant CAN node – RadCAN. This was to allow quicker migration of current designs
between the various environments as required.

Therefore, the single chip CAN microcontroller functionality had to be re-created with a
discrete 8051 microcontroller, memory, EPROM, ADC and FPGA, as shown in figure 5.1
below.

Figure 6 – Discrete elements of the RadCAN solution

Using traditional space approved components a Latch-up immune, highly SEU tolerant,
100Krad solution was produced. However, there is a significant increase in design
complexity and size. The physical impact of migrating from COTS to radiation tolerant is
shown in Table 2.

8051 FPGA
(208 pin)

CASA2
(CAN)

Boot
EPROM

12-bit ADC

CAN
Physical Relay

48 GPIO

128K x 8
Memory

M
U

X

16 C
hannels

Primary &
Secondary
CAN Bus

8051 FPGA
(208 pin)

CASA2
(CAN)

Boot
EPROM

12-bit ADC

CAN
Physical Relay

48 GPIO

128K x 8
Memory

M
U

X

16 C
hannels

M
U

X

16 C
hannels

Primary &
Secondary
CAN Bus

 COTS microcontroller RadCAN

Size 1”sq >6”sq

Mass <5g >50g

Power <0.75W (max), 0.20W (nominal) Estimate 1W

Total Dose <10Krad 100Krads

SEE Protection None Highly SEU tolerant, latch-up
immune

Component Cost <$10 >$15000

Export Issues None Full ITAR

Table 2 – Comparison of a Radiation Tolerant to COTS CAN solution

3 Future Work

3.1 Protocols

CAN-SU has been tried and tested over a large number of missions and has been proved
robust. It does not however make the most of CAN. The use of 29 bit identifiers could
increase the amount of data available per telemetry request and also make use of the RTR
bit and other features unavailable through CAN-SU. Future work on CAN protocols at
SSTL could also concentrate on CANOpen.

3.2 Hardware

SSTL is currently looking at the latest generation of 8-bit microcontrollers to replace the
current infineon device. Initials tests of a Microchip PIC device have looked promising with
the 3.3V core providing a significant power saving. The processor can also be clocked up
to 40MHz providing up to 3.5MIPS if required (compared to the infineons 1MIPS).

As SSTL moves out of purely LEO missions, the need for more robust, radiation tolerant
systems increases. The next generation of RadCAN is being developed as a System on a
chip solution (SoC), integrating VHDL IP cores for a micro-controller, CAN core, memory
and EDAC in a single FPGA as shown in figure 7. The current FPGA baseline is the
million gate radiation tolerant version of the Actel AX.

Figure 7 – IP cores to replace RadCAN

For applications not requiring microcontroller functionality, RadCAN Lite is being
developed as just the CAN core with a simple state-machine for telemetry and
telecommand services. This design would be targeted at the smaller and cheaper Actel
RTSXA range of FPGAs.

8051
Commercial

IP Core

> 20Kbytes
SRAM from
Internal AX
Resources

Boot Code
Stored as

LUT

16:8 Cyclic
EDAC

SSTL IP Core

Hurricane
ESA CAN
IP Core

GPIO
& Custom
Interfaces

ADC
InterfaceGlue

Actel RTAX1000S

External ADC and
Analog multiplexers
Are still required

IO can be configured
As LVDS or LVTTL

8051
Commercial

IP Core

> 20Kbytes
SRAM from
Internal AX
Resources

Boot Code
Stored as

LUT

16:8 Cyclic
EDAC

SSTL IP Core

Hurricane
ESA CAN
IP Core

GPIO
& Custom
Interfaces

ADC
InterfaceGlue

Actel RTAX1000S

External ADC and
Analog multiplexers
Are still required

IO can be configured
As LVDS or LVTTL

4 Conclusion

With 10’s of orbit years of use on SSTL satellites, COTS CAN has been proven to be a
suitable architecture for the radiation benign LEO missions. The combination of module
redundancy and fault tolerant system design has resulted in no observed failures of the
CAN bus or it’s constituent components.

With the developments outlined above, the CAN bus will be an attractive alternative to
more traditional space bus architecture for all missions.

5 References

1. http://www.caen.it/micro/rd_casta.html: a Rad-Hard 8051 microcontroller with on chip
CAN hardware.
2. http://www.can.bosch.com/: bosch’s CAN page
3. http://www.can.bosch.com/docu/can2spec.pdf : the Bosch CAN 2.0 B specification
4. http://www.can-cia.org/: CAN in automation
5. http://www.vector-informatik.com/canlist/: an informative CAN mailing list

